
Reparameterization invariance and RG equations: extension of the local potential

approximation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 195401

(http://iopscience.iop.org/1751-8121/42/19/195401)

Download details:

IP Address: 171.66.16.153

The article was downloaded on 03/06/2010 at 07:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/19
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 195401 (29pp) doi:10.1088/1751-8113/42/19/195401

Reparameterization invariance and RG equations:
extension of the local potential approximation

H Osborn and D E Twigg

Department of Applied Mathematics and Theoretical Physics, Wilberforce Road, Cambridge,
CB3 0WA, UK

E-mail: ho@damtp.cam.ac.uk and det28@cam.ac.uk

Received 29 January 2009, in final form 20 March 2009
Published 21 April 2009
Online at stacks.iop.org/JPhysA/42/195401

Abstract
Equations related to the Polchinski version of the exact renormalization group
(RG) equations for scalar fields which extend the local potential approximation
to first order in a derivative expansion, and which maintain reparameterization
invariance, are postulated. Reparameterization invariance ensures that the
equations determine the anomalous dimension η unambiguously and the
equations are such that the result is exact to O(ε2) in an ε-expansion for any
multi-critical fixed point. It is also straightforward to determine η numerically.
When the dimension d = 3 numerical results for a wide range of critical
exponents are obtained in theories with O(N) symmetry, for various N and
for ranges of η, are obtained within the local potential approximation. The
associated η, which follows from the derivative approximation described here,
is found for various N. The large N limit of the equations is also analysed. A
corresponding discussion is also given in a perturbative RG framework and
scaling dimensions for derivative operators are calculated to first order in ε.

PACS numbers: 11.10.Gh, 64.60.Fr, 64.60.Ak, 64.60.Kw, 68.35.Rh

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Exact functional renormalization group (RG) flow equations [1–8] allow, at least for scalar
field theories, the possibility of a non-perturbative analysis of fixed points and determination of
critical exponents which control the RG flow near any fixed point. In all such equations, there
is a cut-off function K(p2) which is essentially arbitrary save for K(0) = 1 and vanishing
sufficiently rapidly as p2 → ∞. Any physical results, such as precise values for exponents,
should be independent of the cut-off although it may be feasible to optimize over different cut-
off functions [9]. The exact RG flow equations are hard to handle except in some truncation
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or expanding in perturbation theory. The local potential approximation (LPA) neglects the
spatial dependence of the fields φ and reduces the effective action S[φ] from a highly non-
trivial functional to a simple function V (φ) and the RG flow equations become a nonlinear
differential equation for V of the form V̇t = F(Vt , Vt

′, Vt
′′), where V̇ denotes the derivative

with respect to t = − log �, with � being the cut-off scale (the equations are invariant under
rescalings of �). The potential RG flow fixed points, Vt → V as t → ∞, are determined by
requiring smooth solutions for all φ of F(V, V ′, V ′′) = 0. The critical exponents describing
the RG flow in the neighbourhood of the fixed point, Vt = V +

∑
r εreλr t vr , may then be

calculated by finding the eigenvalues λr , and eigenfunctions vr , for a corresponding linear
differential operator depending on the fixed point solution for V . For all λr > 0, the associated
operators are relevant and it is necessary to tune εr = 0 to attain the fixed point under RG flow.

When applied to the Polchinski RG equation [4], for which F(V, V ′, V ′′) has a very simple
quadratic form, the LPA has the virtue that all dependence of the cut-off can be removed by
rescalings of V and φ. Although rather crude the LPA is compatible with the global features
of RG flow since, in cases that have been investigated, it realizes the same fixed points as are
present in the full quantum field theory for scalar fields that are found by other techniques (this
is not manifestly true for more complicated theories with gauge fields and fermions [10]).

Despite describing the essential features of the landscape of critical points for scalar
theories the LPA has, nevertheless, many limitations. In particular it is not possible to
consistently determine η, the anomalous dimension for φ. In theories with dimension d = 3, η

is generally small but clearly results for critical exponents must then have an error of at least
O(η), although results when the LPA is applied to different RG flow equations differ in
general by rather more than this. Attempts to go beyond the LPA usually invoke an expansion
in terms of derivatives of φ [11–18]. To first order, this introduces a function Z(φ) which is
the coefficient of (∂φ)2 in an expansion of the effective action (for multi-component fields φi ,
this becomes a symmetric tensor Zij (φ)). Z and V obey coupled equations which in principle
allow η to be determined by requiring non-singular solutions for both Z and V . However, the
dependence on the cut-off becomes more severe in the derivative expansion. Applied to the
Polchinski equation, there are two constants A,B which are essentially arbitrary [13]. Apart
from this arbitrariness, the results also depend on the value chosen for Z(0) in solving the
coupled equations [15].

Exact RG equations, without approximations, are invariant under reparameterizations,
including rescalings, of the fundamental fields [19]. This property ensures that the full
equations have a line of physically equivalent fixed points which may be parameterized by
different values of Z(0), [5, 15, 20]. Physical results, such as η, are independent of where on
this line the fixed point solution is chosen. As a consequence of the line of equivalent fixed
points, the calculated exponents must include one which is exactly zero. The corresponding
marginal operator is redundant, essentially one which vanishes on the equations of motion.

In the context of the Polchinski RG equation it was shown, for arbitrary dimensions d, in
[21] that for any local operator O, such that

∫
ddxO gives an eigenoperator represented by an

eigenfunction for the linearized equations with critical exponent λO, it is possible to construct
associated redundant operators with exponents

λ = λO − 1
2 (d + 2 − η) − 2m, m = 0, 1, 2, . . . , (1.1)

irrespective of any particular choice of a smooth cut-off function. Furthermore the operator φ

is a local operator determining an eigenfunction with λφ = 1
2 (d + 2 − η) and hence, applying

(1.1) with m = 0, this directly shows that λ = 0 is a possible eigenvalue whose eigenfunction
generates the marginal operator necessary for reparameterization invariance.
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Although reparameterization invariance is a property of the full nonlinear RG equations,
it is generally lost in approximations such as the derivative expansion. There is no longer
a fluctuation eigenfunction with λ = 0 exactly. Here we heuristically construct equations
for V (φ), Z(φ) and also for multi-component generalizations, which maintain these desirable
features. The equation for V remains the same as in the LPA except for the introduction of
η. The associated equation for Z depends on the solution for V and determines η. Using an
appropriate scalar product, an integral expression may be found which may be used to find η

in a fashion which is manifestly independent of Z(0). The eigenvalues for the corresponding
differential operator are in accord with (1.1) when m = 0 and the zero-mode eigenfunction
can also be found explicitly.

For the purposes of comparison, we also discuss results for derivative operators of the
form Gij (φ)∂μφi∂μφj using standard perturbation theory techniques and the ε-expansion to
obtain results for the anomalous dimensions at the fixed point to first order in ε. For such
derivative operators, it is necessary to take account of mixing with scalar operators F(φ) with
the same dimension but there are also additional constraints on the associated β-functions.
Keeping only contributions just to first order in the coupled (F,Gij ) an infinitesimal variation
δφi = vi(φ), for nonlinear vi(φ), in the Lagrangian is equivalent to corresponding changes in
(F,Gij ). This leads to identities which show that the scaling dimensions satisfy relations of
the same form as in (1.1) in general in a perturbative framework. We are also able to determine
the scale dimensions to O(ε) at each of the multi-critical fixed points for scalar theories when
O(N) symmetry is imposed. Although such operators are irrelevant as far as RG flows are
concerned, they are of course of interest in determining the spectrum of operators and scale
dimensions in the theory at its critical points.

In this paper, we describe in the following section the results for the simplest case of a
single component field which corresponds to the Ising model and has been much discussed
previously. For d = 3, the equations are solved numerically and the associated eigenvalues
determined for various values of η. The appropriate value of η necessary for a non-singular
solution of the Z-equation is also found. In section 3, we extend the discussion to multi-
component fields, imposing O(N) symmetry so that simple equations, of a form similar
to those considered in section 2, are obtained. The eigenfunctions are then O(N) tensors.
The irreducible representations are given by symmetric traceless tensors of rank l and the
corresponding eigenvalues also depend on l. Numerical results are then given for various
N and l. In section 4, we show how these equations may be solved in an ε-expansion
recovering perturbative results at the various possible non-trivial multi-critical fixed points as
the dimension d is reduced. In section 5 we consider perturbatively the usual β-functions
in a loop expansion, extending results obtained in the single component case in [21]. In
section 6, these results are extended to derivative operators and mixing effects taken into
account. In section 7, we make some more general remarks concerning the status of the
equations discussed in this paper. Although they have been motivated by requiring that they
share general properties of the exact RG equations, they serve to show how these may still
be maintained in quite simple approximations. Various calculational details are relegated to
four appendices. In appendix A, we show how the equations can be solved for large N and
a formula for η to O(N−1) obtained which is quite close to the exact large N result. In
appendix B, we give some details of the perturbative results for β-functions that are used in
sections 5 and 6. In appendix C, we give a general discussion using dimensional regularization
of the consequences of invariance of the regularized theory under variations δφi = −vi(φ). In
appendix D, we give some details of the nearest singularities that are found numerically when
the solution of the local potential approximation for the Polchinski equation is extended to the
complex plane.
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2. Equations for a single component field

It is simplest to consider first a single scalar field φ corresponding to the universality class for
the Ising model. At a fixed point, the equation for V (φ) is

V ′′(φ) − 1
2 (d − 2 + η)φV ′(φ) − V ′(φ)2 + dV (φ) = 0. (2.1)

This is just the standard LPA for the Polchinski equation including the anomalous dimension
η. In general, this is set to zero as there is no mechanism to determine this from
(2.1). The two trivial solutions of (2.1) are V (φ) = 0, for the Gaussian fixed point, and
V (φ) = 1

4 (2 − η)
(
φ2 − 2

d

)
, for the high temperature fixed point. Non-trivial solutions even in

φ, so that V ′(0) = 0, which are non-singular for all φ and

V (φ) ∼ 1
4 (2 − η)φ2 + Aφ

2d
d+2−η for large φ, (2.2)

depend on a precise choice for V (0) = k which then determines A. Such solutions appear
whenever d is reduced below 2n/(n − 1) for n = 2, 3, . . . [22, 23]. The critical exponents are
then determined from the eigenvalue equation

Df (φ) = (λ − d)f (φ), (2.3)

with the differential operator

D = d2

dφ2
− 1

2
(d − 2 + η)φ

d

dφ
− 2V ′(φ)

d

dφ
. (2.4)

It is easy to see, using (2.1), that

DV ′(φ) = − 1
2 (d + 2 − η)V ′(φ), Dφ = − 1

2 (d − 2 + η)φ − 2V ′(φ), (2.5)

and hence we may construct two exact odd eigenfunctions:

fφ(φ) = 1
2 (2 − η)φ − V ′(φ),

λφ = 1
2 (d + 2 − η), (2.6)

fR(φ) = V ′(φ), λR = 1
2 (d − 2 + η),

where fR(φ) corresponds to a redundant operator with λR being given by (1.1) with O being
the identity operator, which corresponds to the solution of (2.3) f (φ) = 1 with λ = d.

It is important for our later discussion to recognize that D in (2.4) is Hermitian with
respect to a scalar product defined by

〈f, g〉 =
∫

dφ e− 1
4 (d−2+η)φ2−2V (φ)f (φ)g(φ), (2.7)

so that

〈f,Dg〉 = 〈Df, g〉. (2.8)

Extending the RG equations to Z(φ) we propose that, in conjunction with (2.1), the
associated equation at the fixed point

Z′′(φ) − 1

2
(d − 2 + η)φZ′(φ) − 2V ′(φ)Z′(φ) − 2V ′′(φ)Z(φ)

= (D − 2V ′′(φ))Z(φ) = η − 2d

d + 2
V ′′(φ)2. (2.9)

Together with (2.1) this satisfies reparameterization invariance so that η is independent of the
particular initial Z(0), unlike the case for other analogous derivative expansion equations. To
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ensure non-singular solutions for all φ requires only a special choice for η. Asymptotically,
for large φ, solutions of (2.9) have the form

Z(φ) ∼ d(2 − η)

2(d + 2)
− η

2 − η
+ Cφ

− 2(2−η)

d+2−η . (2.10)

In general, the value of the asymptotic constant C depends on Z(0).
The proposed Z-equation (2.9) is similar to the derivative expansion result in [13]. It

differs in that the coefficient of the V ′′Z term is 2, rather than 4, and that on the right-hand
side there is a definite coefficient 2d

d+2 rather than an essentially arbitrary cut-off-dependent
constant (in terms of the equations in [13], we take for the cut-dependent constant B the
precise value d

d+2 ). In respect of these terms, (2.9) is identical with an analogous equation
obtained in [21] using an expansion in terms of scaling fields which is similar in spirit to the
derivative expansion. In the scaling field approach the corresponding coefficient is determined
precisely essentially by those divergences in two-point amplitudes which are universal, i.e.
renormalization scheme independent. If G(x) is the cut-off-dependent propagator, then we
have for the following products

∂

∂t
G(x)n ∼ −nanδ

d(x),
∂

∂t
G(x)2n−1 ∼ −(2n − 1)bn∂

2δd(x), (2.11)

for

d = dn = 2n

n − 1
, (2.12)

such that an, bn are constants, independent of the cut-off function and depending only on the
large x behaviour of G(x). According to the results obtained in [21],

bn

an
2

= dn

2(dn + 2)
. (2.13)

The coefficients in RG equations such as (2.9) should not depend on the particular critical
point, here labelled by n, but may depend on the spatial dimension d. Applying the ε-expansion
to (2.9) with the particular coefficient 2d

d+2 ensures, as was shown in [21] and also subsequently
here, that η is correct to O(ε2) for all critical points n = 2, 3, . . . . Although results such as
these for η were obtained from Wilsonian RG equations as soon as they were first proposed,
and were shown to be independent of the detailed cut-off function [24], they are also identical,
of course, with results from standard Feynman graph techniques which arise directly from the
coefficients of the universal logarithmic divergences for particular two-point Feynman graphs.
These logarithmic divergences are equivalent to (2.11). In a sense, compatibility with the
ε-expansion may be regarded as an optimal choice for such constants as B. However, in the
scaling field derivation described in [21] there is no free constant to determine and agreement
with the ε-expansion is not imposed but follows automatically.

In addition, (2.9) differs from corresponding equations in [13, 21] by the absence of a ηZ

term. Removing such a contribution is essential to obtain subsequent results. In general in a
derivative expansion there are also expected to be additional contributions on the right-hand
side of (2.1) involving Z but the exact form differs between [13, 21] and also involves a
cut-off-dependent constant which we here essentially set to zero.

Corresponding to (2.1) and (2.9), there are associated eigenvalue equations for critical
exponents:(

D + d 0

−2Z′(φ) d
dφ

− (
2Z(φ) − 4d

d+2V ′′(φ)
)

d2

dφ2 D − 2V ′′(φ)

) (
f (φ)

g(φ)

)
= λ

(
f (φ)

g(φ)

)
. (2.14)
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It is easy to see that this decouples into pairs of equations for eigenvalues λf , λg where
λf is obtained from (2.3), with the corresponding g determined in terms of f by inverting
D − 2V ′′(φ) − λf and, also, with f = 0,

Dg(φ) − 2V ′′(φ)g(φ) = λgg(φ). (2.15)

For the eigenfunctions in (2.6), the corresponding functions g are given by

−gφ(φ) = gR(φ) = Z′(φ). (2.16)

To show reparameterization invariance of (2.9), we note that for any solution of (2.3)
there is a corresponding solution of (2.15) given by

g(φ) = f ′(φ), λg = λf − 1
2 (d + 2 − η), (2.17)

in accord with (1.1). Starting from fφ(φ) in (2.6), it is then easy to obtain an exact zero mode:

g0(φ) = 1
2 (2 − η) − V ′′(φ), (2.18)

representing the necessary marginal redundant operator present in the RG flow equations.
Since D − 2V ′′(φ) is Hermitian with respect to the scalar product in (2.7) we must have, for
consistent solutions of (2.9),

η〈g0, 1〉 = η

∫
dφ e− 1

4 (d−2+η)φ2−2V (φ)

(
1

2
(2 − η) − V ′′(φ)

)

= 2d

d + 2
〈g0, V

′′2〉 + 〈g0, (D − 2V ′′)Z〉

= 2d

d + 2

∫
dφ e− 1

4 (d−2+η)φ2−2V (φ)

(
1

2
(2 − η) − V ′′(φ)

)
V ′′(φ)2. (2.19)

Since η is small, it is easy to iterate (2.19) in conjunction with (2.1) starting from η = 0 to
determine the consistent solution for η with high numerical precision.

When d = 3, we may readily solve (2.1) numerically tuning k = V (0) so that the
singularity in the solution arises for the largest possible value of φ compatible with numerical
precision; (2.1) was written as two coupled first-order equations and were integrated from
φ = 0 using RK4. The limiting results when η = 0 are shown in figure 1. Numerical results
for the Z-equation (2.9) are also shown in figure 2. These were obtained in a similar fashion as
for V in terms of corresponding first-order differential equations. The solutions also develop
singularities which are very sensitive to the value of η, where the corresponding V -solution
of course has been used.

Having determined V , the eigenvalues λn are then determined numerically for small
values of η and d = 3 by optimizing the eigenvalue such that the eigenfunction blows up as
slowly as possible within the range where results for V (φ) are reliable. The results are ordered
such that λn > λn+1 with λ0 = 3. For n even (odd), the associated eigenfunctions are even
(odd) in φ. From (2.6) λ1 = 1

2 (5 − η) and λ3 = 1
2 (1 + η) which provides a consistency check

on our numerical results. For even n the results are in table 1 and for odd n they are in table 2.
For the small values considered, the dependence on η is close to linear. For η = 0, our results
agree with the much more accurate determinations in [25, 26].

We have also determined the value of η required for non-singular solutions of (2.9) and
verified that the result is independent of the value chosen for Z(0) and also in agreement with
(2.19). This may be used to determine η by iteration starting from η = 0 and gives

η = 0.041 347 for k = 0.065 4776. (2.20)

For this value,

ν = 1/λ2 = 0.647, ω = −λ4 = 0.612. (2.21)
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Figure 1. Typical numerical solution of (2.1), with d = 3, η = 0, for V (φ) starting from the
critical value k = V (0) = 0.0761994008. Due to rounding errors, the solution breaks down for
φ � 7 and is singular at φ0 ≈ 11.23. As shown, for φ � φ0, it is well approximated near the
singularity by the leading singular form Vsing.(φ) = − ln(φ0 − φ) + 1

4 φ0(φ0 − φ) + const for
solutions of (2.1). Note that this has a minimum at φ = φ0 − 4/φ0 matching the minimum of the
numerical solution.

Z
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(a) eta=0.041346

Z
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0.0
0 1 2 3 4 5

φ

(b) eta=0.041347

Figure 2. Numerical solutions of (2.9) for various Z(0) with η just either side of the critical
value so that the singularity arises for the largest possible φ. The graphs demonstrate how η is
independent of Z(0).

3. Multi-component fields

There are natural generalizations of the above equations to the case of an N-component scalar
field φi . Instead of (2.1), we have

∂2V (φ) − 1

2
((d − 2)φ + (ηφ)) · ∂

∂φ
V (φ) − ∂

∂φ
V (φ) · ∂

∂φ
V (φ) + dV (φ) = 0 , (3.1)
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Table 1. Even eigenvalues and initial value k = V (0) for non-singular solutions.

η k λ2 λ4 λ6 λ8 λ10

0.00 0.076 199 401 1.5395 −0.6557 −3.1800 −5.9122 −8.7961
0.01 0.073 512 228 1.5409 −0.6449 −3.1560 −5.8735 −8.7416
0.02 0.070 885 912 1.5421 −0.6341 −3.1319 −5.8344 −8.6866
0.03 0.068 319 137 1.5433 −0.6232 −3.1076 −5.7951 −8.6312
0.04 0.065 810 847 1.5444 −0.6123 −3.0832 −5.7554 −8.5754
0.05 0.063 359 963 1.5454 −0.6013 −3.0585 −5.7155 −8.5190
0.06 0.060 965 439 1.5463 −0.5903 −3.0337 −5.6751 −8.4621
0.07 0.058 626 258 1.5471 −0.5793 −3.0087 −5.6345 −8.4048
0.08 0.056 341 435 1.5478 −0.5682 −2.9835 −5.5935 −8.3469
0.09 0.054 110 012 1.5485 −0.5570 −2.9582 −5.5521 −8.2884
0.10 0.051 931 059 1.5490 −0.5458 −2.9326 −5.5103 −8.2294

Table 2. Odd eigenvalues.

η λ5 λ7 λ9

0.00 −1.8867 −4.5244 −7.3377
0.01 −1.8696 −4.4932 −7.2911
0.02 −1.8524 −4.4618 −7.2422
0.03 −1.8351 −4.4301 −7.1970
0.04 −1.8177 −4.3982 −7.1493
0.05 −1.8002 −4.3660 −7.1012
0.06 −1.7826 −4.3336 −7.0527
0.07 −1.7648 −4.3010 −7.0038
0.08 −1.7470 −4.2680 −6.9545
0.09 −1.7290 −4.2348 −6.9047
0.10 −1.7109 −4.2013 −6.8544

for ηij a symmetric anomalous dimension matrix and ∂2 = ∂
∂φ

· ∂
∂φ

. The corresponding
equation for critical exponents is just as in (2.3):

DF(φ) = (λ − d)F (φ) , (3.2)

but with the differential operator

D = ∂2 − 1

2
((d − 2)φ + (ηφ)) · ∂

∂φ
− 2

∂

∂φ
V (φ) · ∂

∂φ
, (3.3)

and we may now also allow tensorial eigenfunctions Fij...(φ). Trivially D1 = 0 so that λ = d

is an exact eigenvalue. Just as in (2.6), we have exact vector eigenfunctions since

DFφ,i(φ) = 1

2
(d − 2)Fφ,i(φ) +

1

2
(ηFφ(φ))i, Fφ,i(φ) = φi − 1

2
(ηφ)i − ∂

∂φi

V (φ),

(3.4)

and we may choose a diagonal basis for ηij . The corresponding scalar product to (2.7) is just

〈F,G〉 =
∫

dNφ e− 1
4 (d−2)φ2− 1

4 φ·(ηφ)−2V (φ)F (φ)G(φ), (3.5)

with additional tensorial contractions if required.

8
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Extending (2.9) to Zij (φ), we require

DZij (φ) − 2V(ik(φ)Zj)k(φ) = ηij − 2d

d + 2
Vik(φ)Vjk(φ), Vij (φ) = ∂2

∂φi∂φj

V (φ),

(3.6)

with () being used to denote symmetrization of the i, j indices. For fluctuations F,Gij around
the fixed point solutions, we have (3.2) and also the associated coupled equation

DGij (φ) − 2V(ik(φ)Gj)k(φ) − 2∂kZij (φ)∂kF (φ)

−
(

2Z(ik(φ) − 4d

d + 2
V(ik(φ)

)
∂j)∂kF (φ) = λGij (φ). (3.7)

As before, it is easy to see that the possible eigenvalues are λF determined by (3.2) and λG

given by

DGij (φ) − 2V(ik(φ)Gj)k(φ) = λGGij (φ), (3.8)

corresponding to (2.15). For any vector eigenfunction Fi(φ), there are associated
eigenfunctions for (3.8) given in terms of

Gij (φ) = ∂iFj (φ) + ∂jFi(φ), (3.9)

since

DGij (φ) − 2V(ik(φ)Gj)k(φ) = (
λF − 1

2 (d − 2)
)
Gij (φ) − 1

2η(ikGj)k(φ). (3.10)

Hence, we have an exact zero mode which may be obtained from (3.4):

G0,ij (φ) = δij − 1
2ηij − Vij (φ). (3.11)

In consequence for (3.6) to be solvable, we must have∫
dNφ e− 1

4 (d−2)φ2− 1
4 φ·(ηφ)−2V (φ)

(
δij − 1

2
ηij − Vij (φ)

)(
ηij − 2d

d + 2
Vik(φ)Vjk(φ)

)
= 0.

(3.12)

In order to obtain tractable equations, we impose O(N) symmetry so that we need to
only deal with functions of ρ = 1

2φ2 and in this case we must have ηij = ηδij . Writing
V (φ) = v(ρ) (3.1) becomes

2ρv′′(ρ) − (d − 2 + η)ρv′(ρ) = −Nv′(ρ) + 2ρv′(ρ)2 − dv(ρ). (3.13)

At the origin, we must have Nv′(0) + dv(0) = 0 and asymptotically

v(ρ) ∼ 1
2 (2 − η)ρ + Aρ

d
d+2−η . (3.14)

To ensure non-singular solutions as before, it is necessary to fine tune v(0). For critical
exponents we consider, if N > 1, spherical harmonics which are expressible in terms of
symmetric traceless tensors or equivalently

Fl(φ) = (t · φ)lfl(ρ), t2 = 0, l = 0, 1, 2, . . . . (3.15)

The eigenvalue equation (3.2) becomes

Dlfl(ρ) = (
λl + l 1

2 (d − 2 + η) − d
)
fl(ρ), (3.16)

for

Dl = 2ρ
d2

dρ2
− (d − 2 + η)ρ

d

dρ
+ (N + 2l)

d

dρ
− 4ρv′(ρ)

d

dρ
− 2lv′(ρ). (3.17)

9
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The relevant boundary conditions are that fl(ρ) is analytic for ρ ≈ 0 and non-singular for

ρ > 0 and ∝ ρ
d−λl
d+2−η

− 1
2 l as ρ → ∞. Corresponding to (3.4),

f1,φ(ρ) = 1
2 (2 − η) − v′(ρ), (3.18)

satisfies

D1f1,φ(ρ) = 0, (3.19)

so that λ1,φ = 1
2 (d + 2 − η). The scalar product, with respect to which Dl is Hermitian,

becomes from (3.5)

〈fl, gl〉l =
∫ ∞

0
dρ ρ

1
2 N+l−1 e− 1

2 (d−2+η)ρ−2v(ρ)fl(ρ)gl(ρ). (3.20)

When N = 1 only l = 0, 1 are relevant, corresponding to even (odd) eigenfunctions. In terms
of v(ρ), which solves (3.13), (3.12) becomes

η

∫ ∞

0
dρ ρ

1
2 N−1 e− 1

2 (d−2+η)ρ−2v(ρ)

(
1

2
(2 − η)N − Nv′(ρ) − 2ρv′′(ρ)

)

= 2d

d + 2

∫ ∞

0
dρ ρ

1
2 N−1 e− 1

2 (d−2+η)ρ−2v(ρ)

×
(

1

2
(2 − η)(Nv′(ρ)2 + 4ρv′(ρ)v′′(ρ) + 4ρ2v′′(ρ)2)

−Nv′(ρ)3 − 6ρv′(ρ)2v′′(ρ) − 12ρ2v′(ρ)v′′(ρ)2 − 8ρ3v′′(ρ)3

)
. (3.21)

When N = 1, it is easy to see that this is identical with (2.19) since then V ′′(φ) =
v′(ρ) + 2ρv′(ρ).

To decompose (3.6), we write

Zij (φ) = δij z(ρ) + φiφj (z
′(ρ) + y(ρ)) = ∂(i(φj)z(ρ)) + φiφjy(ρ), (3.22)

and using

DZij (φ) − 2V(ik(φ)Zj)k(φ) = δij (D1z(ρ) + 2y(ρ)) + φiφj

d

dρ

(
D1z(ρ) + 2y(ρ)

)
+ φiφj (D1y(ρ) − (d − 2 + η + 4v′(ρ) + 4ρv′′(ρ))y(ρ)), (3.23)

we may reduce (3.6) to

D1z(ρ) = η − 2y(ρ) − 2d

d + 2
v′(ρ)2, (3.24)

and

D1y(ρ) − (d − 2 + η + 4ρv′′(ρ) + 4v′(ρ))y(ρ) = − 4d

d + 2
ρv′′(ρ)2. (3.25)

The equation for y thus decouples from that for z so that (3.25) may be solved, and the result
used in (3.24) then determines z. Asymptotically z(ρ) approaches a constant, just as in (2.10),
but y(ρ) vanishes. Since, as shown in (3.19), D1 has a zero mode f1,φ , given by (3.18), η

must be fixed to allow a non-singular solution by

η〈f1,φ, 1〉1 = 2〈f1,φ, y〉1 +
2d

d + 2
〈f1,φ, v′2〉1. (3.26)

10
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Table 3. First l = 0 eigenvalues for N = 1, 2, 4, 10.

η k(1) λ
(1)

0,1 k(2) λ
(2)

0,1 k(4) λ
(4)

0,1 k(10) λ
(10)

0,1

0.00 0.076 200 1.5395 0.199 34 1.4120 0.538 76 1.2432 1.7637 1.0886
0.01 0.073 513 1.5409 0.191 76 1.4175 0.516 93 1.2535 1.6929 1.0999
0.02 0.070 886 1.5421 0.184 39 1.4229 0.495 78 1.2634 1.6242 1.1112
0.03 0.068 319 1.5433 0.177 23 1.4281 0.475 34 1.2732 1.5577 1.1224
0.04 0.065 811 1.5444 0.170 26 1.4330 0.455 52 1.2823 1.4931 1.1336
0.05 0.063 360 1.5454 0.163 49 1.4378 0.436 33 1.2921 1.4306 1.1447

Using∫ ∞

0
dρ ρ

1
2 N−1 e− 1

2 (d−2+η)ρ−2v(ρ)G0,ij (φ)φiφj

×(D1y(ρ) − (d − 2 + η + 4ρv′′(ρ) + 4v′(ρ))y(ρ))

= − 2(d − 2 + η)〈f1,φ, y〉1, (3.27)

we may also obtain

(d − 2 + η)〈f1,φ, y〉1 = 4d

d + 2

∫ ∞

0
dρ ρ

1
2 N+1 e− 1

2 (d−2+η)ρ−2v(ρ)

×
(

1

2
(2 − η) − v′(ρ) − 2ρv′′(ρ)

)
v′′(ρ)2. (3.28)

Combining (3.26) and (3.28) is equivalent to (3.21). If we restrict to scalar fluctuations,
without any harmonics, then we may decompose Gij (φ) in terms of g(ρ), h(ρ) in a fashion
similar to (3.22) so that (3.8) reduces to

D1g(ρ) = λg(ρ), (3.29)

with h = 0 and also

D1h(ρ) − 4(ρv′′(ρ) + v′(ρ))h(ρ) = (λ + d − 2 + η)h(ρ), (3.30)

when (D1 − λ)g(ρ) = −2h(ρ). Manifestly, the eigensolutions for g in (3.29) are identical
with the solutions of (3.16) for l = 1. The eigenvalues are related as expected from (1.1)
so the solutions of (3.29) represent redundant operators. The eigenvalues determined by the
h-equation (3.30) give exponents corresponding to genuine physical scaling operators.

Numerically, (3.13) and (3.16) can be solved straightforwardly for d = 3, as before after
precisely tuning k(N) = v(0) to ensure non-singular solutions for all ρ > 0. The eigenvalues
are denoted by λ

(N)
l,m where λ

(N)
0,0 = 3 and we take m = 0, 1, 2, . . . . In terms of the single-

component results λ
(1)
0,m = λ2m and λ

(1)
1,m = λ2m+1. When l = 0 some results are given in

tables 3 and 4, for N = 1 they match as expected the results given earlier. For η = 0, these
agree with results in [27, 28]. In the large N limit, taking η = 0, λ

(N)
l,m = 3 − 2m − 1

2 l.

For l = 1, λ
(N)
1,0 = 1

2 (5 − η) and λ
(N)
1,1 = 1

2 (1 + η) which is a useful check. Some other
results are given in table 5. We also present some results for l = 2 in table 6 and l = 4 in
table 7. An important observation is that λ

(2)
4,0 < 0 whereas λ

(N)
4,0 > 0 for N � 3. This reflects

the instability of the O(N) symmetric fixed point against RG flow to that with just discrete
cubic symmetry when N � 3. That the critical Nc < 3 has been shown in very detailed
multi-loop Feynman diagram calculations [29].
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Table 4. Second and third l = 0 eigenvalues for N = 1, 2, 4, 10.

η λ
(1)

0,2 λ
(2)

0,2 λ
(4)

0,2 λ
(10)

0,2 λ
(1)

0,3 λ
(2)

0,3 λ
(4)

0,3 λ
(10)

0,3

0.00 −0.6557 −0.6712 −0.7338 −0.8713 −3.1800 −3.0714 −2.9400 −2.8985
0.01 −0.6449 −0.6596 −0.7187 −0.8515 −3.1560 −3.0498 −2.9199 −2.8728
0.02 −0.6341 −0.6480 −0.7039 −0.8319 −3.1319 −3.0281 −2.8998 −2.8473
0.03 −0.6232 −0.6364 −0.6892 −0.8124 −3.1076 −3.0062 −2.8795 −2.8221
0.04 −0.6123 −0.6247 −0.6746 −0.7930 −3.0832 −2.9841 −2.8592 −2.7970
0.05 −0.6013 −0.6131 −0.6602 −0.7739 −3.0585 −2.9617 −2.8397 −2.7722

Table 5. l = 1 eigenvalues for N = 1, 2, 4, 10.

η λ
(1)

1,2 λ
(2)

1,2 λ
(4)

1,2 λ
(10)

1,2 λ
(1)

1,3 λ
(2)

1,3 λ
(4)

1,3 λ
(10)

1,3

0.00 −1.8867 −1.7986 −1.6741 −1.5535 −4.5244 −4.3251 −4.0185 −3.6719
0.01 −1.8696 −1.7835 −1.6615 −1.5406 −4.4932 −4.2984 −3.9983 −3.6529
0.02 −1.8524 −1.7683 −1.6487 −1.5277 −4.4618 −4.2714 −3.9778 −3.6339
0.03 −1.8351 −1.7530 −1.6358 −1.5148 −4.4301 −4.2442 −3.9570 −3.6149
0.04 −1.8177 −1.7375 −1.6228 −1.5020 −4.3982 −4.2166 −3.9358 −3.5958
0.05 −1.8002 −1.7220 −1.6096 −1.4891 −4.3661 −4.1887 −3.9143 −3.5767

Table 6. l = 2 eigenvalues for N = 2, 4, 10.

η λ
(2)

2,0 λ
(4)

2,0 λ
(10)

2,0 λ
(2)

2,1 λ
(4)

2,1 λ
(10)

2,1

0.00 1.7819 1.8476 1.9283 −0.4737 −0.3332 −0.1531
0.01 1.7760 1.8396 1.9187 −0.4675 −0.3308 −0.1535
0.02 1.7701 1.8317 1.9091 −0.4612 −0.3282 −0.1539
0.03 1.7642 1.8239 1.8996 −0.4548 −0.3255 −0.1541
0.04 1.7583 1.8161 1.8901 −0.4482 −0.3226 −0.1542
0.05 1.7525 1.8084 1.8807 −0.4416 −0.3195 −0.1543

Table 7. l = 4 eigenvalues for N = 2, 3, 4, 10.

η λ
(2)

4,0 λ
(3)

4,0 λ
(4)

4,0 λ
(10)

4,0 λ
(2)

4,1 λ
(3)

4,1 λ
(4)

4,1 λ
(10)

4,1

0.00 −0.0337 0.1109 0.2315 0.6045 −2.6147 −2.3954 −2.2093 −1.6169
0.01 −0.0358 0.1046 0.2218 0.5871 −2.6023 −2.3889 −2.2077 −1.6286
0.02 −0.0377 0.0985 0.2124 0.5700 −2.5897 −2.3821 −2.2056 −1.6373
0.03 −0.0395 0.0926 0.2032 0.5530 −2.5768 −2.3749 −2.2031 −1.6456
0.04 −0.0412 0.0869 0.1943 0.5326 −2.5636 −2.3673 −2.2001 −1.6536
0.05 −0.0428 0.0815 0.1856 0.5197 −2.5501 −2.3593 −2.1967 −1.6612

We may also use (3.21) and also (3.26) with (3.28) to determine η(N) when d = 3 with
the results

η(1) = 0.0413, η(2) = 0.0414, η(3) = 0.0390, η(4) = 0.0357,

η(10) = 0.0200, η(20) = 0.0125, (3.31)

falling off as expected with increasing N.

12
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Table 8. Eigenvalues for N = 20.

m = 0 1 2 3 4 5

λ
(20)

0,m 3.000 1.041 −0.937 −2.938 −4.966 −7.025

λ
(20)

1,m 2.500 0.500 −1.521 −3.566 −5.640 −7.744

λ
(20)

2,m 1.963 −0.077 −2.139 −4.227

λ
(20)

3,m 1.392 −0.687 −2.789 −4.917

λ
(20)

4,m 0.788 −1.328 −3.468 −5.634

In order to verify consistency with large N results we also calculated eigenvalues for
N = 20 and η = 0, when k(20) = 3.872 7448, which are given in table 8. For l, m small, these
are close to the asymptotic values.

An interesting special case is N = −2, which was considered in [16]. For this N from
(3.13) we get v′(0)

(
v′(0)− 1 + 1

2η
) = 0. When v′(0) = 1 − 1

2η, we have the high temperature
fixed point solution v(ρ) = (

1 − 1
2η

)(
ρ + 2

d

)
. The relevant non-trivial fixed point arises for

v(0) = v′(0) = 0. Consistency with our equations requires η(−2) = 0. To show this we may
note in (3.18) that f1,φ(ρ) → 1

2 (2 − η) as ρ → 0 so that, with the definition of the scalar
product in (3.20), the integral 〈f1,φ, 1〉1 diverges due to the singular behaviour as ρ → 0. On
the other hand 〈f1,φ, v′2〉1 and also 〈f1,φ, y〉1, given by (3.28), are finite. Hence, (3.26) is
only consistent when η = 0. For the corresponding eigenfunctions, it is necessary to consider
boundary conditions carefully. In (3.16), as ρ → 0, the differential equation requires solutions
for fl(ρ) which are O(1) and O(ρa) where a = 1− 1

2 (N +2l)−2Nk/d, k = v(0). Generally,
we impose the requirement that the second solution is absent. For N = −2, l = 0, when also
k = 0, there are solutions with f0(ρ) = O(ρ2) for which the norm given by (3.20) is finite.
However to obtain eigenvalues which are related to those for N � 0 it appears necessary to
consider as before solutions with f0(0) = 1, and we may impose f0

′′(0) = 0. In this case, we
find numerically λ0,1 = 2.

4. ε-expansion

A further consistency check, following [21], is to consider the ε-expansion where

d = 2n

n − 1
− ε,

d

d − 2
= n +

1

2
(n − 1)2ε + O(ε2), n = 2, 3, . . . . (4.1)

In this case, we define

x = 1
2 (d − 2)ρ, (4.2)

and, with v(ρ) = v̂(x), η = 0, (3.13) becomes

xv̂′′(x) + (α + 1 − x)v̂′(x) +
d

d − 2
v̂(x) = xv̂′(x)2, α = 1

2
N − 1. (4.3)

Using (4.1) it is easy to see that as ε → 0, there is a solution of the form

v̂(x) = knεL
α
n(x) + O(ε2), (4.4)

for Lα
n a Laguerre polynomial, satisfying xLα

n
′′(x) + (α + 1 − x)Lα

n
′(x) + nLα

n(x) = 0 with the
orthogonality condition∫ ∞

0
dx e−xxαLα

r (x)Lα
s (x) = 1

r!
�(α + 1 + r)δrs . (4.5)

13
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To determine kn, we consider the scalar product of both sides of (4.3) with Lα
n to O(ε2)

giving

1

2
(n − 1)2kn

∫ ∞

0
dx e−xxαLα

n(x)2 = kn
2
∫ ∞

0
dx e−xxα+1Lα

n(x)Lα
n

′(x)2. (4.6)

This requires

kn = (−1)n
(n − 1)2

nn!

(α + 1)n

G
(α,0)
nnn

, (4.7)

where we define

G
(α,l)
rst = (−1)r+s+t

�(α + l + 1)

∫ ∞

0
dx e−xxα+lLα+l

r (x)Lα+l
s (x)Lα

t (x). (4.8)

It is straightforward to set up a perturbation expansion in ε for the higher order terms in
solution (4.4) as a series summing over Laguerre polynomials Lα

r .
For the associated eigenfunctions and eigenvalues, letting

λl,m = d − (d − 2)
(
m + 1

2 l + λ̂l,m

)
, (4.9)

from (3.16) and (3.17) we require that λ̂l,m is determined by

D̂l f̂l,m(x) = −(λ̂l,m + m)f̂l,m(x), (4.10)

where, with η = 0 and α as in (4.3), Dl = (d − 2)D̂l :

D̂l = x
d2

dx2
+ (α + l + 1 − x)

d

dx
− 2xv̂′(x)

d

dx
− lv̂′(x). (4.11)

Note that we must have λ̂1,0 = 0, λ̂1,n−1 = ε(n − 1)/(d − 2) to ensure the exact results
λ1,0 = 1

2 (d + 2), λ1,n−1 = 1
2 (d − 2). As ε → 0, it is easy to see that

f̂l,m(x) → Lα+l
m (x), λ̂l,m = O(ε). (4.12)

To first order, where we may use (4.4) for v̂ in (4.11), perturbation theory gives

λ̂l,m = knε
m!

�(α + l + 1 + m)

∫ ∞

0
dx e−xxα+lLα+l

m (x)
(

2xLα
n

′(x)
d

dx
+ lLα

n
′(x)

)
Lα+l

m (x)

= (−1)nnkn

m!G(α,l)
mmn

(α + l + 1)m
ε = (n − 1)2 (α + 1)n

n!G(α,0)
nnn

m!G(α,l)
mmn

(α + l + 1)m
ε. (4.13)

To lowest order, η = O(ε2). Using (3.26) and (3.28) with (4.1) and (4.4) gives

η

∫ ∞

0
dx e−xxα+1 = 2n

2n − 1

kn
2ε2

(n − 1)2

( ∫ ∞

0
dx e−xxα+1Lα

n
′(x)2 + 2

∫ ∞

0
dx e−xxα+2Lα

n
′′(x)2

)
.

(4.14)

Noting that Lα
n

′(x) = −Lα+1
n−1(x), we then find from (4.5)

η = 2

n!

(
nkn

n − 1

)2

(α + 2)n−1ε
2 = 2(n − 1)2n!

(
(α + 1)n

n!2G
(α,0)
nnn

)2

ε2. (4.15)

Explicit results in (4.13) and (4.15) can be obtained using

G
(α,l)
rst = (α + l + 1)r (α + l + 1)s

(l + r + s − t)!

∑
n

1

n!(r − n)!(s − n)!

(l + 2n)!

(t − r − s + 2n)!

1

(α + l + 1)n
.

(4.16)
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From (4.16) we have G
(α,l)
00t = (

l

t

)
so that G

(α,1)
00t = 0, t � 2, and (α + 1)G

(α,1)
n−1n−1n = 1

2nG(α,0)
nnn .

These ensure that λ̂1,0 = 0, λ̂1,n−1 = 1
2 (n−1)2ε as required. For the case of primary relevance

here n = 2, and we have

k2 = 1

2(N + 8)
, η = 2k2

2(N + 2)ε2,

(4.17)
λ̂l,m = k2((l + 2m)(l + 2m − 1) + m(N + 2l + 2m − 2))ε.

These results are in accord with those obtained [30, 31] in early calculations involving the
ε-expansion. For the potentially marginal operators λ4,0 = 2(N − 4)k2ε, λ2,1 = −14k2ε and
λ0,2 = −ε, so that the critical Nc = 4 to leading order.

We may also extend the O(ε) calculations to (3.30) for the non-redundant derivative
operators. With η = 0 and the same change of variables as in (4.2), this becomes

(D̂1 − 2xv̂′′(x) − 2v̂′(x))ĥm(x) = −(m + λ̂m)ĥm(x),
(4.18)

λm = −(d − 2)(m + 1 + λ̂m), m = 0, 1, . . . ,

where with (4.4) we may take ĥm(x) = Lα+1
m (x) + O(ε) and λ̂m = O(ε). To first order

perturbation theory gives

λ̂m = λ̂1,m + 2knε
m!

�(α + 2 + m)

∫ ∞

0
dx e−xxα+1Lα+1

m (x)2
(
xLα

n
′′(x) + Lα

n
′(x)

)
= λ̂1,m + (−1)n2knε

m!

(α + 2)m

(
(n + α)G

(α,1)
mmn−1 − αG

(α+1,0)
mmn−1

)
, (4.19)

using the identity xLα
n

′′(x) + Lα
n

′(x) = −(n + α)Lα
n−1(x) + αLα+1

n−1(x). When n = 2 this gives

λ̂m = λ̂1,m + k2ε(N + 8m + 2), λ̂1,m = k2εm(N + 6m + 2), (4.20)

giving

λ̂m = (m + 1)N + 6m2 + 10m + 2

2(N + 8)
ε. (4.21)

5. Perturbative discussion

The crucial significance of the ε-expansion is that it is possible to use standard perturbative
methods in quantum field theory involving a Feynman graph expansion. To show the parallel
with the above treatment, we describe how the same results are found in terms of conventional
β-functions. For a general scalar Lagrangian

L = 1
2∂μφ · ∂μφ + V (φ), (5.1)

we may define a generalized β-function for the potential V , which is a linear function of the
couplings1, where

BV (φ) = 1
2 (d − 2)φ · ∂V (φ) − dV (φ) + βV (φ). (5.2)

The perturbative RG flow equations are then

V̇ (φ) = −BV (φ), (5.3)

and the fixed points V = V∗ are hence defined by

BV∗(φ) = 0. (5.4)

1 For V (φ) = ∑
I gIOI , where OI form a basis of monomials in φ, βV (φ) = ∑

I βI (g)OI . Subsequently,
βV · ∂

∂V
= ∑

I βI (g) ∂

∂gI .
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With d as in (4.1) for a renormalizable theory V (φ) is a polynomial of degree 2n.
Using background field methods and minimal subtraction [32] in a perturbative expansion
calculations give βV in the form

βV (φ) = (γφφ) · ∂V (φ) + β̃V (φ), (5.5)

where γφ,ij is the anomalous dimension matrix for the field φ and β̃V (φ) depends on φ solely
in terms of scalar contractions of various products of Vi1i2...ik (φ) = ∂i1 . . . ∂ikV (φ) with k � 2.
For renormalizable V, γφ depends only on the φ-independent gi1i2...i2n

= Vi1i2...i2n
and βV (φ) is

also just a polynomial of degree 2n. In general there are contributions to βV at (p − 1)(n − 1)

loops, p = 2, 3 . . ., when β̃V = O(∂2n(p−1)V p) and, if p > 2, γφ(g) = O(gp−1).
Assuming V∗(φ) = 1

(2n)!g∗i1i2...i2n
φi1 · · ·φi2n

(5.4) then determines, for n =
2, 3, . . . , g∗i1i2...i2n

perturbatively as an expansion in ε. At the fixed point, the anomalous
dimension matrix for φ also defines

ηij = 2γφ,ij |g=g∗ . (5.6)

In the vicinity of a fixed point defining, for F(φ) an arbitrary polynomial of degree 2n, a
linear operator γ by

βV +F (φ) = βV (φ) + γF(φ) + O(F 2), (5.7)

critical exponents are determined by the eigenvalue equation

�F(φ) = 1
2 (d − 2)φ · ∂F (φ) + γ∗F(φ) = (d − λ)F (φ), γ∗ = γ |V =V∗ . (5.8)

As in the discussion of the exact RG equations, there are explicit eigenfunctions relating to φ

itself. Corresponding to (5.5), we have

γ = (γφφ) · ∂ + γ̃ , (5.9)

where γ̃ involves at least second-order φ-derivatives. Hence

�φi = 1
2 (d − 2)φi + 1

2ηijφj , (5.10)

and also by differentiating (5.4)

�V∗,i (φ) = 1
2 (d + 2)V∗,i (φ) − 1

2ηijV∗,j (φ). (5.11)

L is arbitrary up to total derivatives so in this discussion, mixing with operators which are just
spatial derivatives is neglected. The relevant matrix is triangular so the determination of scale
dimensions is not affected. Up to a derivative operator proportional to ∂2φi, V∗,i (φ) ∼ 0, as a
consequence of the field equations so this is redundant.

At lowest order, as shown using background field techniques with n − 1 loop Feynman
diagrams in [21],

βV (φ)(n−1) = anVi1···in (φ)Vi1···in (φ), (5.12)

where higher loops are O(V 3). Also, for 2(n − 1) loops,

γφ,ij
(2n−2) = 2

(n!)2

(2n)!
an

2gii1i2...i2n−1gji1i2...i2n−1, (5.13)

where

an = 1

(4π)n

n − 1

n!
�

( 1

n − 1

)n−1
. (5.14)

Definition (5.7) and (5.12) then determine DV to lowest order:

γ̃ (n−1) = 2anVi1···in (φ)Fi1···in (φ). (5.15)
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As before, we impose O(N) symmetry so that

V (φ) = g
1

n!

(
1

2
φ2

)n

, βV (φ) = βg(g)
1

n!

(
1

2
φ2

)n

, γφ,ij = γφ(g)δij . (5.16)

At the fixed point (5.4),

βg(g∗) = (n − 1)g∗ε, η = 2γφ(g∗). (5.17)

With O(N) symmetry, the eigenfunctions in (5.8) have the form

Fl,m(φ) = (t · φ)l
(

1
2φ2

)m
, t2 = 0. (5.18)

The corresponding eigenvalues are then

d − λl,m = 1
2 (d − 2 + η)(l + 2m) + γl,m, (5.19)

with γl,m being the anomalous dimension determined by γ̃∗Fl,m(φ) = γl,mFl,m(φ).
To handle the combinatorics involved in evaluating (5.15) with F as in (5.18), we re-

express this using

Vi1···in (φ)Fi1···in (φ) =
(

∂

∂φ
· ∂

∂φ′

)n

(V (φ)F (φ′))|φ′=φ, (5.20)

and then follow the method described in [31]. First we note

(a · ∂)k
(

1

2
φ2

)n

=
∑

r

k!n!

r!(k − 2r)!(n − k + r)!

(
1

2
φ2

)n−k+r(1

2
a2

)r

(a · φ)k−2r , (5.21)

and then(
∂

∂φ
· ∂

∂φ′

)k((
1

2
φ2

)n

(t · φ′)l
(

1

2
φ′2

)m)
=

∑
r

k!n!

r!(k − 2r)!(n − k + r)!

(
1

2
φ2

)n−k+r

× (φ · ∂ ′)k−2r

(
1

2
∂ ′2

)r(
(t · φ′)l

(
1

2
φ′2

)m)
. (5.22)

Using(
1

2
∂ ′2

)r (
(t · φ′)l

(
1

2
φ′2

)m)
= m!

(m − r)!
(α + l + 1 + m − r)r(t · φ′)l

(
1

2
φ′2

)m−r

, (5.23)

with α as in (4.3), and

(φ · ∂ ′)p
(

(t · φ′)l
(

1

2
φ′2

)m)∣∣∣∣
φ′=φ

= (2m + l)!

(2m + l − p)!
(t · φ)l

(
1

2
φ2

)m

, (5.24)

we then obtain2

1

n!

(
∂

∂φ
· ∂

∂φ′

)k((
1

2
φ2

)n

(t · φ′)l
(

1

2
φ′2

)m)∣∣∣∣∣
φ′=φ

= A
(α,l)
kn,m(t · φ)l

(
1

2
φ2

)m+n−k

,

(5.25)
A

(α,l)
kn,m =

∑
r

k!

r!(k − 2r)!(n − k + r)!

m!

(m − r)!
(α + l + 1 + m − r)r

(2m + l − 2r)!

(2m + l − k)!
.

2 The coefficients A
(α,l)
kn,m satisfy various identities, in particular

(α + l)
(
A

(α,l)
k+1n,m + 2m(α + l + m)A

(α,l)
kn,m−1

)
= m(2α + l)(α + l + m + n − k)A

(α,l+1)
kn,m−1 + l(α + l + m)(m + n − k)A

(α,l−1)
kn,m .

When N = 1, A
(− 1

2 ,l)

kn,m = (2n)!(2m+l)!
2kn!(2n−k)!(2m+l−k)!

for l = 0, 1.
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Hence from (5.12) and (5.15) with (5.16) and (5.18), we may obtain to lowest order

βg(g)(n−1) = A(α,0)
nn,n ang

2. (5.26)

From the fixed point equation (5.17), with η = 0 and (5.26), we get

A(α,0)
nn,n ang∗ = (n − 1)ε. (5.27)

In consequence

γ̃ (n−1)
∗ Fl,m(φ) = 2ang∗A(α,l)

nn,mFl,m(φ). (5.28)

and, in (5.8) and (5.19), to lowest order

γl,m = 2ang∗A(α,l)
nn,m = 2(n − 1)

A(α,l)
nn,m

A
(α,0)
nn,n

ε. (5.29)

Note that γ0,n = βg
′(g∗).

As a special case of (5.25), we also have

∂

∂φi

∂

∂φ′
j

(
∂

∂φ
· ∂

∂φ′

)2n−1((
1

2
φ2

)n(1

2
φ′2

)n)∣∣∣∣∣
φ′=φ

= 1

2
(2n)!n!(α + 2)n−1δij (5.30)

so that (5.6) and (5.13) give

η = 2n!(α + 2)n−1(ang∗)2 = 2(n − 1)2n!
1(

A
(α,0)
nn,n

)2 ε2. (5.31)

The precise identity of the results (5.29) and (5.31) with those obtained from the RG
equation (4.13) and (4.15), where λ̂l,m = 1

2 (n − 1)γl,m, follows from

A
(α,l)
kn,m = k!m!

G
(α,l)
m+n−kmn

(α + l + 1)m+n−k

. (5.32)

When n = 2, the O(ε) results may be read off from

2a2g∗ = ε

N + 8
, A

(α,l)
22,m = (2m + l)(2m + l − 1) + m(N + 2l + 2m − 2). (5.33)

6. Mixing effects

For operators which are monomials φm with m � 2n, perturbatively it is necessary to include
mixing effects with operators (∂φ)2φm−2n. For m � 4n − 2 there is additional mixing with
operators involving four derivatives, such as (∂2φ)2, but this is neglected here. We here discuss
how the treatment of the previous section may be extended and show how reparameterization
invariance is manifest in a perturbative approach.

The initial renormalizable Lagrangian L in (5.1) is extended to

L = LV + LF,G, LV = 1
2∂μφ · ∂μφ + V (φ), LF,G = F(φ) + 1

2Gij (φ)∂μφi∂μφj .

(6.1)

Although for general F,Gij the resulting L is non-renormalizable, keeping only counterterms
which are linear in F,Gij , we may consistently define a bare Lagrangian L0 which extends
the renormalizable theory defined by LV to include first-order perturbations by finite two
derivative operators, as long as F(φ),Gij (φ) are constrained to avoid the necessity of four
derivative counterterms. As usual, there are corresponding β-functions:

BF (φ) = 1
2 (d − 2)φ · ∂F (φ) − dF(φ) + βF (φ),

(6.2)
BG,ij (φ) = 1

2 (d − 2)φ · ∂Gij (φ) + γφ,ikGkj (φ) + γφ,jkGik(φ) + βG,ij (φ),

18



J. Phys. A: Math. Theor. 42 (2009) 195401 H Osborn and D E Twigg

which are linear in F,Gij so that

βF = γFF F + γFG,ijGij , βG,ij = γGF,ijF + γGG,ijklGkl. (6.3)

Here γFF , γFG,ij , γGF,ij , γFG,ijkl are differential operators depending on the renormalizable
couplings or V , clearly we have, restricted to F(φ) of degree 2n, γFF = γ as defined in (5.7).
At a fixed point, the exponents are defined by the coupled equations

BF (φ)|V =V∗ = −λF(φ), BG,ij (φ)|V =V∗ = −λGij (φ). (6.4)

For the Lagrangians in (6.1), we have

δLV = δF,GLF,G for δφi = vi(φ), δ∂μφi = vi,j (φ)∂μφj , (6.5)

if3

δF,GF (φ) = v(φ) · ∂V (φ), δF,GGij (φ) = ∂ivj (φ) + ∂jvi(φ). (6.6)

If F(φ),Gij (φ) are restricted to ensure that no mixing with four derivative operators arises,
then it is necessary to require vi(φ) = O(φ2(n−1)).

As was apparent in the discussion of renormalization for general two-dimensional σ -
models [33, 34], invariance under reparameterizations δφi = vi(φ) leads to a corresponding
freedom in the definition of the β-functions. Here we show how this leads to relations for the
exponents defined by (6.4). First assuming

βF (φ)|F=v·∂V,Gij =∂ivj +∂j vi
= (γ v(φ)) · ∂V (φ) + v(φ) · ∂βV (φ), (6.7a)

βG,ij (φ)|F=v·∂V,Gkl=∂kvl+∂lvk
= ∂i(γ vj (φ) − 2γφ,jkvk(φ)) + ∂j (γ vi(φ) − 2γφ,ikvk(φ)), (6.7b)

with γ defined in (5.8), (6.2) gives

BF (φ)|F=v·∂V,Gij =∂ivj +∂j vi
= U(φ) · ∂V (φ) + v(φ) · ∂BV (φ), (6.8a)

BG,ij (φ)|F=v·∂V,Gkl=∂kvl+∂lvk
= ∂iUj (φ) + ∂jUi(φ), (6.8b)

for

Ui(φ) = 1
2 (d − 2)φ · ∂vi(φ) + γ vi(φ) − 1

2 (d − 2)vi(φ) − γφ,ij vj (φ). (6.9)

A general justification of (6.8a), (6.8b) with (6.9) is described in appendix C.
At a critical point, where (5.4) holds, then for vector solutions of (5.8), �vi = (d −λv)vi ,

there are, as a consequence of (6.8a), (6.8b), corresponding solutions of (6.4) such that

λ = λv − 1
2 (d + 2 − η), (6.10)

assuming a diagonal form for ηij . Thus in this perturbative context, we reproduce (1.1). In
particular as a consequence of (5.10), we have the exact zero modes

F0(φ) = φ · ∂V (φ), G0,ij = 2δij . (6.11)

To verify these results, we consider the lowest order perturbative results at n − 1 loops:

βF (φ)(n−1) = 2anVi1...in (φ)Fi1...in (φ)

− an

∑
r,s,t�1

r+s+t=n+1

n!

r!s!t!
K̂rstVi1...ir k1...kt

(φ)Vj1...jsk1...kt
(φ)Gi1j1,i2...ir j2...js

(φ)

+ an

∑
r�2,s,t�1
r+s+t=n+1

n!

r!s!t!
K̂rstVi1...ir k1...kt

(φ)Vj1...jsk1...kt
(φ)Gi1i2,i3...ir j1...js

(φ), (6.12)

3 The full Lagrangian in (6.1) is invariant if (6.6) is extended to δF = v · ∂(V + F), δGij = ∂ivj + ∂j vi + v · ∂Gij +
∂ivkGkj + ∂j vkGik .
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where an is as in (5.14) and

K̂rst = �

(
1

n − 1

)
�

(
n−r
n−1

)
�

(
n−s
n−1

)
�

(
n−t
n−1

)
�

(
r

n−1

)
�

(
s

n−1

)
�

(
t

n−1

) . (6.13)

When r = 1, s + t = n, K̂rst = 1. Also,

βG,ij (φ)(n−1) = 2an

(
Vi1...in (φ)Gij,i1...in (φ) + 2Vi1...in(i (φ)Gj)i1,i2...in (φ)

−Vi1...in(i (φ)Gi1i2,j)i3...in (φ)
)
. (6.14)

We may directly verify that (6.12) and (6.14) satisfy (6.7a), (6.7b) with γ̃ (n−1) being given by
(5.15) and also γφ = 0. At the order given in (6.14), there are no contributions involving F.
At the next non-zero order

βG,ij (φ)(2n−2) = −8an
2 (n!)2

(2n)!
gi1...i2n−1(iFj)i1...i2n−1(φ)

+ (2n − 1)4an
2 (n!)2

(2n)!
gi1...i2n−2k(igi1...i2n−2lj )Gkl(φ) + O(∂G), (6.15)

which is also compatible with (6.7a), (6.7b) using (5.13) for γφ .
For definite results we assume O(N) symmetry as in (5.16). To first order in ε, equations

(6.4) decouple and we may write the eigenvalue equation
1
2 (d − 2)φ · ∂Gij (φ) + 2ang∗DGij (φ) = −λGij (φ), (6.16)

where from (6.14) DGij is given by

DGij (φ) = 1

n!

(
∂

∂φ
· ∂

∂φ′

)n((
1

2
φ2

)n

Gij (φ
′)
)∣∣∣∣∣

φ′=φ

+
2

n!

(
∂

∂φ
· ∂

∂φ′

)n−1(
∂k∂(i

(
1

2
φ2

)n

Gj)k(φ
′)
)∣∣∣∣∣

φ′=φ

− 1

n!

( ∂

∂φ
· ∂

∂φ′
)n−2

(
∂k∂l∂(i

(
1

2
φ2

)n

∂ ′
j)Gkl(φ

′)
)∣∣∣∣

φ′=φ

. (6.17)

Clearly for Gij (φ) = δij , λ = 0. In general, we have

D
(

φiφj

(
1

2
φ2

)m)
= 1

m + 1
∂(i

1

n!

(
∂

∂φ
· ∂

∂φ′

)n((
1

2
φ2

)n

φ′
j)

(
1

2
φ′2

)m+1)∣∣∣∣∣
φ′=φ

− 1

m + 1
D

(
δij

(
1

2
φ2

)m+1)
, (6.18)

so that from (5.25)

Gij (φ) = δij

(
1

2
φ2

)m+1

+ (m + 1)φiφj

(
1

2
φ2

)m

, m = 0, 1, . . . ,

⇒ λm = −(d − 2)(m + 1) − 2ang∗A
(α,1)
nn,m+1 = −(d − 2)(m + 1) − γ1,m+1, (6.19)

as expected from the general relation (6.10) with (5.19) and η = 0. In general

1

m + 1
D

(
δij

(
1

2
φ2

)m+1)
= αmδij

(
1

2
φ2

)m+1

+ βmφiφj

(
1

2
φ2

)m

, (6.20)

and we then find another eigenvalue, in addition to (6.19), which can be expressed in the form

λm = −(d − 2)(m + 1) − γm, γm = 2ang∗((m + 1)αm − βm). (6.21)
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To obtain more explicit results for this, we apply (6.17) to obtain

D
(

δij

(
1

2
φ2

)m)
= A(α,0)

nn,mδij

(
1

2
φ2

)m

+ 2
(
(m + 1)A

(α,0)
n−1n,m − 2mA

(α,1)
n−1n,m−1 − (α + n)mA

(α,1)
n−2n−1,m−1

)
×

(
δij

(
1

2
φ2

)m

+ mφiφj

(
1

2
φ2

)m−1)

+
2

n!

(
∂

∂φ
· ∂

∂φ′

)n−1((
1

2
φ2

)n

∂ ′
i∂

′
j

(
1

2
φ′2

)m)∣∣∣∣∣
φ′=φ

+ (α + n)
2

(n − 1)!

(
∂

∂φ
· ∂

∂φ′

)n−2((
1

2
φ2

)n−1

∂ ′
i∂

′
j

(
1

2
φ′2

)m)∣∣∣∣∣
φ′=φ

. (6.22)

From this, we may determine

(m + 1)αm − βm = A
(α,0)
nn,m+1 +

4

N
(m + 1)(α + m + 1)

(
A

(α,0)
n−1n,m + (α + n)A

(α,0)
n−2n−1,m

)
− 4

N
m(α + m + 2)

(
A

(α,2)
n−1n,m−1 + (α + n)A

(α,2)
n−2n−1,m−1

)
. (6.23)

Combining (6.23) with (6.21) gives the exponents for new non-redundant operators as long as
N � 2; for N = 1, the corresponding eigenfunction vanishes. When n = 2, we have

(m + 1)αm − βm = (m + 2)N + 6m2 + 12m + 4. (6.24)

Hence combining this with (5.33) the anomalous dimensions of these derivative operators at
the fixed point, to first order in ε, are given by

γm = (m + 2)N + 6m2 + 12m + 4

N + 8
ε. (6.25)

This may be compared with 2λ̂m in (4.21) which was obtained from the approximate derivative
expansion for the Polchinski RG equations. Although similar, they are not identical. The
perturbative results in (6.25) are of course the first terms in a well-defined expansion to any
order in powers of ε.

7. Conclusion

The status of the equations presented in this paper for extending the local potential
approximation to the Polchinski exact RG equation is unclear, in that there is no consistent
derivation and the resulting equations for V,Z are partially decoupled in that the V -equation
lacks expected Z contributions. Nevertheless the LPA equation now involves η which, in
this respect, is similar to an approximation made in a treatment of exact RG equations in
[35]. It remains to be seen whether the introduction of terms involving Z into the Polchinski
LPA equations is at all possible, while maintaining the crucial property of reparameterization
invariance, and so allowing a well-defined determination of η. Some time ago Morris [16]
obtained, with a particular cut-off function K(p2) proportional to a simple power of p2, and
for the exact RG equations applicable to the one particle irreducible functional �, a set of
equations, in a derivative expansion, which are invariant under global rescaling of the fields.
To this extent, reparameterization invariance is preserved and there is consequently an exact
zero mode so that η may be determined unambiguously. However, these equations are highly
nonlinear and hard to analyse. The associated zero-mode eigenfunction for these equations

21



J. Phys. A: Math. Theor. 42 (2009) 195401 H Osborn and D E Twigg

has not apparently been found explicitly in the literature. If a derivative expansion is to be
consistent, then results should not change dramatically when the LPA for V is extended to
first order in derivative operators to a pair of coupled equations for V,Z. However, results
for some eigenvalues obtained using the Morris equations differ significantly [26]. It would
be very desirable to understand more analytically what features of the equations in [16]
ensure reparameterization invariance so that this crucial constraint might be imposed more
generally in derivative expansion RG equations. It might also be helpful, as was the case
here, to construct an appropriate scalar product for the eigenfunctions whose corresponding
eigenvalues are the essential output of exact RG equations.

In general reparameterization invariance, which is related to issues of scheme
independence, is akin to a gauge invariance of the exact RG equations [36]. As is well
known for gauge theories, violating gauge invariance in some approximation can lead to
unphysical conclusions. Emphasizing the consequences of reparameterization invariance, and
the consequential presence of an exact zero mode in the RG flow equations, might also be
a useful criterion for optimization in equations where reparameterization invariance is not
automatic.

It is of course non-trivial that the LPA captures the global aspects of RG flows between
various possible fixed points in scalar field theories. The calculated critical exponents are
also of essentially the correct magnitude since the results must agree with those from ordinary
perturbation theory for non-derivative operators to first order in ε (strictly this appears to have
been shown only when maximal O(N) symmetry is required; it is presumably true for fixed
points with lesser symmetry although a general argument appears to be lacking). A natural
constraint for any derivative expansion is that this agreement should extend to non-redundant
scalar operators with two derivatives. The discrepancy between the anomalous dimensions
for such operators given by (4.21) and (6.25) shows that the equations discussed here are not
fully satisfactory in that respect. Perhaps more general derivative expansion equations can be
obtained by using more input from perturbative results.
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Appendix A. Large N calculations

Solutions of the LPA fixed point equations become more tractable in the large N limit
[27, 37]. We show here how these results may be used to obtain a corresponding value
for η using (3.21) or (3.26) and (3.28). In the large N limit, we suppose v, ρ = O(N) and
taking the derivative of (3.13) then gives

((d − 2 + η)ρ − N + 4ρv′)v′′ = (2 − η)v′ − 2v′2, (A.1)

or

2v′(s − v′)
dρ

dv′ − (d − 2s + 4v′)ρ = −N, s = 1 − 1

2
η. (A.2)

Such first-order linear equations are readily solved giving ρ as a function of v′:

(s − v′)
1
2s

d+1

v′ 1
2s

d−1
ρ = C − 1

2
N

∫ v′

0
du

(
s − u

u

) 1
2s

d

, (A.3)
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with the integral extended by analytic continuation for 1
2s

d > 1. To ensure a smooth
continuously differentiable solution for all ρ > 0, we must set the constant of integration
C = 0 and then the large N result can be expressed as

ρ = N

d − 2s
F

(
2, 1; 2 − 1

2s
d; 1

s
v′

)
, (A.4)

for F a standard hypergeometric function.
In the large N limit η → 0, so we may set s = 1. When d = 3, F

(
2, 1; 1

2 ; v′) = 0 for
v′ = −0.634 9132 and so v(0) ∼ 0.211 6377N . For general d, we may invert (A.4) giving

v′(ρ) = (4 − d)(d − 2)

4N
(ρ − ρ0) + O((ρ − ρ0)

2), ρ0 = N

d − 2
. (A.5)

In integrals obtained from the scalar product (3.20), we then have

ρ
1
2 N e− 1

2 (d−2)ρ−2v(ρ) ≈ C e− d−2
2N

(ρ−ρ0)
2
, (A.6)

for some constant C, and so the dominant contribution for large N arises for ρ ≈ ρ0 where we
may use (A.5). Hence,

〈f̂1,φ, v′2〉1

〈f̂1,φ, 1〉1
≈ (4 − d)2(d − 2)

16N
. (A.7)

Furthermore in (3.28) for ρ ≈ ρ0

ρ
(

1
2 (2 − η) − v′(ρ) − 2ρv′′(ρ)

) ≈ 1
2N, (A.8)

so that (3.28) gives

〈f̂1,φ, y〉1

〈f̂1,φ, 1〉1
≈ d(d − 2)(4 − d)2

8(d + 2)N
. (A.9)

Hence from (3.26), the leading large N result for η in this analysis is determined to be

η = 3d(d − 2)(4 − d)2

8(d + 2)N
+ O(N−2). (A.10)

The exact leading order large N result η ∼ 2(4 − d)�(d − 1) sin π 1
2 (d − 2)/(πd�( 1

2d)2N) is
numerically close to (A.10), coinciding as d → 4.

Appendix B. Perturbative calculations

We here outline how the perturbative results (6.12) and (6.14) are obtained following the
background field methods, with a background field ϕ and dimensional regularization, used in
[21]. To obtain (6.14), we consider vacuum graphs which are O(V G):

W1 =
∑
r�2

1

2r!

∫
ddx1ddx2{Gij,i1...ir (ϕ1)∂

μϕ1i∂μϕ1jG0(x12)
r

+ 2rGii1,i2...ir (ϕ1)∂
μϕ1i∂μG0(x12)G0(x12)

r−1

+ r(r − 1)Gi1i2,i3...ir (ϕ1)∂
μG0(x12)∂μG0(x12)G0(x12)

r−2}Vi1...ir (ϕ2), (B.1)

for ϕ1i = ϕi(x1), etc, and G0(x) is the basic d-dimensional propagator −∂2G0(x) = δd(x).
Using, with d as in (4.1) and an as in (5.14),

G0(x)n ∼ 2

ε

n!an

n − 1
δd(x), ∂μG0(x)G0(x)n−1 ∼ 2

ε

(n − 1)!an

n − 1
∂μδd(x),

(B.2)
∂μG0(x)∂μG0(x)G0(x)n−2 ∼ 2

ε

(n − 2)!an

n − 1
∂2δd(x).
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Consequently, the necessary counterterm to cancel the ε-pole in (B.1) is given by

L1c.t.(ϕ) = 1

ε

an

n − 1
∂μϕi∂μϕj

(
Vi1...in (ϕ)Gij,i1...in (ϕ) + 2Vi1...ini (ϕ)Gji1,i2...in (ϕ)

−Vi1...ini (ϕ)Gi1i2,j i3...in (ϕ)
)
, (B.3)

which directly gives (6.14).
Correspondingly to obtain (6.12), we consider vacuum graphs which are O(V 2G):

W2 = −1

2

∑
r,s�0
t�1

1

r!s!t!

∫
ddx1ddx2ddx3Gij,i1...ir j1...js

(ϕ1)Vii1...ir k1...kt
(ϕ2)Vjj1...jsk1...kt

(ϕ3)

× ∂μG0(x12)G0(x12)
r∂μG0(x13)G0(x13)

sG0(x23)
t

− 1

2

∑
r�0
s,t�1

1

r!s!t!

∫
ddx1ddx2ddx3Gij,i1...ir j1...js

(ϕ1)Viji1...ir k1...kt
(ϕ2)Vj1...jsk1...kt

(ϕ3)

× ∂μG0(x12)∂μG0(x12)G0(x12)
rG0(x13)

sG0(x23)
t . (B.4)

By considering the pole in
(
x12

2
)−λ3

(
x13

2
)−λ2

(
x23

2
)−λ1 when λ1 + λ2 + λ3 = d, assuming

λ1, λ2, λ3 < 1
2d so that there are no sub-divergences, we find, for K̂rst as in (6.13),

∂μG0(x12)G0(x12)
r∂μG0(x13)G0(x13)

sG0(x23)
t |r+s+t=n−1

∼ 2

ε

n!an

n − 1

K̂r+1s+1t

(r + 1)(s + 1)
δd(x12)δ

d(x13),

∂μG0(x12)∂μG0(x12)G0(x12)
rG0(x13)

sG0(x23)
t |r+s+t=n−1

∼ − 2

ε

n!an

n − 1

K̂r+2st

(r + 2)(r + 1)
δd(x12)δ

d(x13). (B.5)

Hence, (B.4) requires the counterterm

L2c.t.(ϕ) = 1

ε

an

n − 1

(
−

∑
r,s,t�1

r+s+t=n+1

n!

r!s!t!
K̂rstVi1...ir k1...kt

(ϕ)Vj1...jsk1...kt
(ϕ)Gi1j1,i2...ir j2...js

(ϕ)

+
∑

r�2,s,t�1
r+s+t=n+1

n!

r!s!t!
K̂rstVi1...ir k1...kt

(ϕ)Vj1...jsk1...kt
(ϕ)Gi1i2,i3...ir j1...js

(ϕ)

)
, (B.6)

which leads to (6.12).
A consistency check may be obtained by considering (B.6) when Gij is a constant.

The result is then L2c.t.(ϕ) = − 1
ε

nan

n−1Vii1...in−1(ϕ)Vji1...in−1(ϕ)Gij . This may also be obtained
directly from lowest order counterterm for V using that the kinetic term in L defines a metric
δij + Gij . A similar argument is sufficient to obtain the last line of (6.15).

Appendix C. Analysis with dimensional regularization

Using dimensional regularization with minimal subtraction for a theory defined by (5.1) and
(6.1), the diffeomorphism invariance under (6.6) extends to the regularized theory and we
demonstrate here the consequences for the perturbative β-functions. The bare Lagrangian,
including all counterterms involving poles in ε necessary for finiteness to first order in F,Gij ,
has the general form

L0 = μ−ε
(

1
2∂μφ · Z∂μφ + V(φ) + F(φ) + Gij (φ) 1

2∂μφi∂μφj

)
, (C.1)
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where μ is the regularization mass scale and F,Gij are linear in F,Gkl and Zij = Zji depends
only on gi1...i2n

. The bare couplings and field φ0 are defined so as to absorb all dependence on
μ. For the standard renormalizable theory, when F,Gij are zero and V(φ) is just a polynomial
of degree 2n, the β-functions and φ-anomalous dimension are defined through(

−ε − (γ̂φφ) · ∂

∂φ
+ β̂V · ∂

∂V

)
V(φ) = 0,

(C.2)(
−ε + β̂V · ∂

∂V

)
Zij = γφ,ikZkj + γφ,jkZki,

where in terms of the β-functions considered earlier

β̂V (φ) = − 1
2εφ · ∂V (φ) + εV (φ) + βV (φ), γ̂φ,ij = − 1

2εδij + γφ,ij . (C.3)

For the extended theory, keeping only contributions to first order in F,Gij , we also have(
−ε − (γ̂φφ) · ∂

∂φ
+ D̂β

)
F(φ) = 0, (C.4a)

(
−ε − (γ̂φφ) · ∂

∂φ
+ D̂β

)
Gij (φ) = γφ,ikGkj (φ) + γφ,jkGki(φ), (C.4b)

for

D̂β = β̂V · ∂

∂V
+ β̂F · ∂

∂F
+ β̂G,kl · ∂

∂Gkl

. (C.5)

Here β̂F is related to βF just as β̂V is to βV in (C.3) and β̂G,ij (φ) = − 1
2εφ ·∂Gij (φ)+βG,ij (φ).

For transformations as in (6.6), invariance of the regularized theory requires

F(φ)|F=v·∂V,Gij =∂ivj +∂j vi
= DvF(φ) = ṽ(φ) · ∂V(φ), (C.6a)

Gij (φ)|F=v·∂V,Gkl=∂kvl+∂lvk
= DvGij (φ) = ∂i ṽk(φ)Zkj + ∂j ṽk(φ)Zki, (C.6b)

for

Dv = (v · ∂V ) · ∂

∂F
+ (∂kvl + ∂lvk) · ∂

∂Gkl

. (C.7)

In (C.6a), (C.6b) ṽi (φ) = vi(φ) + · · ·, where we may have higher order terms involving poles
in ε.

The crucial constraints arise from the consistency conditions between (C.4a), (C.4b) and
(C.6a), (C.6b) giving

[Dv, D̂β]F(φ) = ũ(φ) · ∂V(φ), (C.8a)

[Dv, D̂β]Gij (φ) = ∂iũk(φ)Zkj + ∂j ũk(φ)Zki, (C.8b)

where

[Dv, D̂β] = (Dvβ̂F − v · ∂β̂V ) · ∂

∂F
+

(
Dvβ̂G,kl

) · ∂

∂Gkl

, (C.9)

and

ũi(φ) =
(

(γ̂φφ) · ∂

∂φ
− D̂β

)
ṽi (φ) − γ̂φ,ij ṽj (φ). (C.10)
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Table 9. Values of ρ0 for N = 1, 2, 3, 4, 10.

N ρ0

1 2.862
2 2.836
3 2.871
4 2.954

10 3.871

Table 10. Values of ρ0 and k for N = 1, 2, 3, 4, 10.

N k ρ0

1 0.252 995 579 1.349
2 0.800 566 594 1.116
3 1.587 372 474 1.014
4 2.451 092 846 1.002

10 7.725 892 940 1.275

To relate ṽ(φ) to v(φ), we require that all counterterms are determined by L0. To achieve
this, we assume

ṽi (φ) = vi · ∂

∂F
F(φ). (C.11)

Using (C.10), this leads to

ũi(φ) =
(
vi · ∂

∂F
β̂F − εvi − γ̂φ,ij vj

)
· ∂

∂F
F(φ) +

(
vi · ∂

∂F
β̂G,kl

)
· ∂

∂Gkl

F(φ). (C.12)

Comparing (C.8a), (C.8b) and (C.9) with (C.6a), (C.6b) and (C.7) requires

Dvβ̂F (φ) − v(φ) · ∂β̂V (φ) = u(φ) · ∂V (φ), (C.13a)

Dvβ̂G,ij (φ) = ∂iuj (φ) + ∂jui(φ), (C.13b)

for

ui(φ) = vi · ∂

∂F
β̂F (φ) − εvi(φ) − γ̂φ,ij vj (φ). (C.14)

These results are equivalent to (6.8a), (6.8b) with (6.9).

Appendix D. Singularities of solutions of RG equation

The critical requirement for solving the RG equation (3.1) is that it is necessary to fine tune
k = v(0) to ensure that there are no singularities for any real positive ρ. Nevertheless, there
are necessarily singularities elsewhere in the complex plane. As shown in [26], it is of interest
to determine the location of such singularities so as to allow the use of conformal mapping
techniques. The structure of the differential equation determines that the singularities are
simple poles of the form

v′(ρ) ∼ 1

ρ0 eiαπ − ρ
, (D.1)
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Figure 3. N = 1 tricritical solution for v′(iρ). The red and yellow lines are the real and imaginary
parts, respectively, and the green and blue lines correspond to a pure pole as in (D.1) with ρ0 from
table 11.

Table 11. Tricritical values of k, ρ0 and α for N = 1, 2, 3, 4.

N k ρ0 α

1 −0.043 027 023 6.3636 0.5150
2 −0.132 093 526 6.4736 0.4766
3 −0.279 532 538 6.5380 0.4383
4 −0.499 803 930 6.5544 0.3993

where reality of the equation ensures that ±α must both give singularities unless α = 1. We
then restrict 0 < α � 1. The singularities are determined by numerically integrating along
lines of constant argument, for v(0) = k and matching with (D.1).

When d = 3, the only singularities that are found within the radius in which the numerical
solution is valid are on the negative real axis, α = 1. Choosing η = 0, the values of k for
suitable N are given in table 3 and the position of the closest singularity to the origin is given
in table 9.

We have also considered d = 5
2 since there are then two solutions of physical interest

with the additional solution arising for d < 3 and representing the tricritical fixed point.
For the solution corresponding to the standard Wilson–Fisher fixed point, the singularities

are again just on the negative real axis. The results are in table 10. For the tricritical case, there
are genuine complex singularities; the results are given in table 11. An illustrative numerical
solution for v′(ρ) compared with the pure pole term in (D.1) is shown in figure 3.
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